\square

Question Paper Code : X 20788

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020

Fifth Semester
Computer Science Engineering
MA 6566 - DISCRETE MATHEMATICS
(Regulations 2013)
Time : Three Hours
Maximum : 100 Marks
Answer ALL questions
PART - A
(10×2=20 Marks)

1. Give the truth value of $\mathrm{T} \leftrightarrow \mathrm{T} \wedge \mathrm{F}$.
2. Write the symbolic representation of "if it rains today, then I buy an umbrella".
3. How many different words are there in the word ENGINEERING ?
4. State the pigeon hole principle.
5. Define a complete graph.
6. Draw the graph with the following adjacency matrix $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$.
7. Prove that inverse of each elements in a group is unique.
8. Define a Field.
9. Let $\mathrm{X}=\{1,2,3,4,5,6\}$ and R be a relation defined as $\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{R}$ if and only if $\mathrm{x}-\mathrm{y}$ is divisible by 3 . Find the elements of the relation R.
10. Show that the absorption laws are valid in a Boolean algebra.
PART - B
11. a) i) Obtain the PDNF and PCNF of $(P \wedge Q) \vee(\sim P \wedge R)$.
ii) Show that $R \wedge(P \vee Q)$ is a valid conclusion from the premises

$$
\begin{equation*}
\mathrm{P} \vee \mathrm{Q}, \mathrm{Q} \rightarrow \mathrm{R}, \mathrm{P} \rightarrow \mathrm{M}, \sim \mathrm{M} . \tag{8}
\end{equation*}
$$

(OR)
b) i) Show that $(x)[P(x) \rightarrow Q(x)] \wedge(x)[Q(x) \rightarrow R(x)] \Rightarrow(x)[P(x) \rightarrow R(x)]$.
ii) Show that $(7 \mathrm{P} \wedge(\rceil \mathrm{Q} \wedge \mathrm{R})) \vee(\mathrm{Q} \wedge \mathrm{R}) \vee(\mathrm{P} \wedge \mathrm{R}) \Leftrightarrow R$, without using truth table.
12. a) i) Using induction principle, prove that $\mathrm{n}^{3}+2 \mathrm{n}$ is divisible by 3 .
ii) Use the method of generating function, solve the recurrence relation $\mathrm{s}_{\mathrm{n}}+3 \mathrm{~s}_{\mathrm{n}-1}-4 \mathrm{~s}_{\mathrm{n}-2}=0 ; \mathrm{n} \geq 2$ given $\mathrm{s}_{0}=3$ and $\mathrm{s}_{1}=-2$.
(OR)
b) i) Prove that in a group of six people, atleast three must be mutual friends or at least three must be mutual strangers.
ii) From a club consisting of six men and seven women, in how many ways we select a committee of (1) 3 men and four women ? (2) 4 person which has at least one women? (3) 4 person that has at most one man? (4) 4 persons that has children of both sexes?
13. a) i) If G is a connected simple graph with n vertices with $\mathrm{n} \geq 3$, such that the degree of every vertex in G is at least $\frac{n}{2}$, then prove that G has Hamilton cycle.
ii) Prove that the complement of a disconnected graph is connected.
(OR)
b) i) Define isomorphism between two graphs. Are the simple graphs with the following adjacency matrices isomorphic ?

$$
\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 1 \tag{10}\\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

ii) Prove that the number of odd degree vertices in any graph is even.
14. a) i) Prove that in a graph, $(\mathrm{a} * \mathrm{~b})^{-1}=\mathrm{b}^{-1} * \mathrm{a}^{-1} \forall \mathrm{a}, \mathrm{b} \in \mathrm{G}$.
ii) Prove that for any commutative Monoid ($\mathrm{M}, *$), the set of all idempotent elements forms a submonoid.
b) i) Prove that Kernel of a homomorphism is a normal sub group of G.
ii) Prove that in a finite group the order of any subgroup divides the order of the group.
15. a) i) Show that every chain is a distributive lattice.
ii) In a distributive complemented lattice. Show that the following are equivalent.
i) $a \leq b$
ii) $\mathrm{a} \wedge \overline{\mathrm{b}}=0$
iii) $\bar{a} \vee b=1$
iv) $\overline{\mathrm{b}} \leq \overline{\mathrm{a}}$.
(OR)
b) i) Show that the De Morgan's laws are valid in a Boolean Algebra.
ii) Show that every chain is modular.

